Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation.
نویسندگان
چکیده
The lithiation reaction of single ZnO nanowire (NW) electrode in a Li-ion nanobattery configuration was observed by in situ transmission electron microscopy. Upon first charge, the single-crystalline NW was transformed into a nanoglass with multiple glassy nanodomains (Gleiter, H. MRS Bulletin2009, 34, 456) by an intriguing reaction mechanism. First, partial lithiation of crystalline NW induced multiple nanocracks ∼70 nm ahead of the main lithiation front, which traversed the NW cross-section and divided the NW into multiple segments. This was followed by rapid surface diffusion of Li(+) and solid-state amorphization along the open crack surfaces. Finally the crack surfaces merged, leaving behind a glass-glass interface (GGI). Such reaction front instability also repeated in the interior of each divided segment, further subdividing the NW into different nanoglass domains (nanoamorphization). Instead of the profuse dislocation plasticity seen in SnO(2) NWs (Science2010, 330, 1515), no dislocation was seen and the aforementioned nanocracking was the main precursor to the electrochemically driven solid-state amorphization in ZnO. Ab initio tensile decohesion calculations verified dramatic lithium embrittlement effect in ZnO, but not in SnO(2). This is attributed to the aliovalency of Sn cation (Sn(IV), Sn(II)) in contrast to the electronically more rigid Zn(II) cation.
منابع مشابه
In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhe wileyonlinelibrary.com DOI: 10.1002/aenm.201200024 Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, wh...
متن کاملLithiation of ZnO nanowires studied by in-situ transmission electron microscopy and theoretical analysis
Transition-metal oxides constitute an important family of high-capacity anodes for Li-ion batteries. ZnO is a model material due to the high theoretical capacity and its representative reaction mechanism upon lithiation. We investigate the structural evolution, mechanical degradation, and stress-regulated electrochemical reactions of ZnO nanowires during the first lithiation through coordinated...
متن کاملProbing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction
Citation: Ali I, Tippabhotla SK, Radchenko I, Al-Obeidi A, Stan CV, Tamura N and Budiman AS (2018) Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction. Front. Energy Res. 6:19. doi: 10.3389/fenrg.2018.00019 Probing stress states in silicon nanowires During electrochemical lithiation Using In Situ synchrotron X-ray Microdi...
متن کاملThe effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation
icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...
متن کاملStudy on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy
A family of mixed transition-metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2011